
BERNHARD RIEDER AND MIRKO TOBIAS SCHÄFER

BEYOND ENGINEERING

Software Design as Bridge over the Culture/Technology Dichotomy

In his book “Le geste et la parole”, the paleontologist André Leroi-Gourhan
sketched the evolution of Homo sapiens as having left the domain of biological
advancement in order to continue – with an accelerated pace – in the field of
language and technology. While many of Leroi-Gourhan's proposals have not aged
well, his concept of humanity being shaped by a man-made web of objects and
symbols – of machinery and discourse one might say – has been a powerful image in
a time when the idea of the tool as neutral artifact is still an important paradigm. In
the last decade, however, there has been a resurgence of academic interest in
technology not purely as a means to an end but as a cultural force. Together with
this shift in perspective on the role of technical artifacts in our high-tech collectives,
we see, more specifically, an increased awareness of the “toolmaker” as the
supposed locus of technical progress. Every age seems to have an epitomical figure
of technical creation: the craftsman for the Middle Ages, the inventor in the
Industrial Revolution, and the engineer in the 20th century. Late capitalism has
introduced a new figure: the designer as the toolmaker of the information age.

The last two decades have produced a plethora of literature on the new way of
creating technical objects; from product design to Web design, from industrial
design to experience design, design is everywhere but no two definitions are the
same. As a consequence, the term refers less to a clear-cut concept or methodology;
it rather functions as a means of differentiation. Software design1 for example is not
a well-defined practice; it is a way of saying that what is being done is somehow
going beyond the well-defined practice of software engineering. Behind the term
“design” actually lurks a multiplicity of quite different ways of creating, shaping,
and maybe even using.

In this article, we will first consider the growing cultural significance of software
in order to establish a motive for having a closer look at software production. We
will show how new practices of technical creation are connected to and stimulated
by this curious artifact, the computer, the Universal Machine. We will then argue
that because culture and technology have become increasingly difficult to
distinguish, we must reevaluate the way in which we create tools, think about
culture, and regulate technical creativity.

1 The term was first coined in Kapor (1986).
1

[Editor(s) here] (ed.), [Book Titlen here], 1—12.
© 2008 Kluwer Academic Publishers. Printed in the Netherlands.

2 BERNHARD RIEDER AND MIRKO TOBIAS SCHÄFER

1.HYBRID PRACTICES

In industrial societies there remain few tasks that are not in one way or another
dependent on computers. Our communication and information routines have shifted
in large part to a computer-based network infrastructure of globally connected
computers, the metamedia (Kay and Goldberg, 1977) of our time. Classic electronic
media like television and telephony are currently passing onto the universal protocol
of TCP/IP2, becoming yet another piece of software that runs on the Internet.
Creative work, game play, social intercourse, information search and management –
so many of the things we do in our everyday lives have become directly connected
to digital tools and networks (Castells, 2000). We are steering towards a unified
digital environment in which computer hardware and software define possibilities
for action as well as conditions of expression.

Interest in technology within the humanities has historically been limited. When
considered, technical artifacts have been assimilated into the industrial complex and
treated as producers of capital rather than of meaning. But the dense entanglement
between human and non-human we witness today increasingly calls for perspectives
that zoom in at the micro-level and theorize not only the great developments of how
“society and culture” relate to “technology”, but first and foremost the increasingly
hybrid everyday practices that are the content of human affairs.

In reference to de Certeau (1980), we can describe these practices as ways of
doing that embed actions in a dense network of meaning, provide a rationale for why
something is done, and sketch a proper way of doing it. There is a non-discursive
dimension to such an art de faire (motor movement, objects, spatial settings, etc.), as
well as a strong discursive element (morals, laws, rules, narratives, etc.). These two
aspects are woven together by continuous action. Collins and Kusch (1998) have
detailed how the atomic particles of practices, actions, can themselves be theorized
as series or trees of micro-acts, coalescing motor movement and meaning. And
Actor-Network-Theory has shown (Latour, 1999) that actions are not properties of
individual agents, but of chain linking human and non-human “actants”, combining
each ones “program of action” to form hybrid actors. If we understand practice as an
embedding of action in time and habit, in these views, the discursive dimension of
an art de faire cannot be severed from its non-discursive, mechanic counterpart.

When applying this view, we see that in general, and with ICT in accelerated and
enlarged form, machines are responsible for always larger parts of the action trees or
action chains, rendering actions intrinsically hybrid. As a consequence, our practices
have become riddled with the work of machines, in many cases without us even
noticing. Software – the prime interest of this article – now goes even deeper than
“classic” technology because many of the tasks being delegated to logical
machinery are semantic in nature. Among other things, algorithms now filter,
structure, interpret, and visualize information in an automatic fashion, performing
tasks previously reserved for humans.

2 Transmission Control Protocol / Internet Protocol are the communication protocols that unite all the
different networks that make up the Internet.

BEYOND ENGINEERING 3

From a practical standpoint, we can understand this process of hybridization
along two axes: new actions and practices are becoming possible (drawing on a
virtual canvas, video communication across oceans, real-time data-mining, etc.) and
existing actions and practices are done in new ways (different in form, style, speed,
efficiency, difficulty, range, etc.).

In this sense, software is responsible for extending, both quantitatively and
qualitatively, the role that technology plays in the everyday practices that make up
modern life. Culture and technology are intertwined at the micro-level – to the
extend that even the analytical separation of the two becomes highly problematic
(Latour, 1999). Is the separation between a discursive and a non-discursive level still
possible when computer programs analyze email, news bulletins and scientific
publications in order to decide which ones to bring to our attention and which ones
to silently discard? When the visibility of an opinion becomes a question of
algorithms?3 Meaning is deeply embedded in the non-discursive – in software itself.
Technology is not only surrounded by discourse, it is discourse. Although we do not
share Heidegger's hostile stance toward technology, his understanding of the tool as
an ontological agent, as a way of “Entbergen” (revealing), is still worth considering.
In “Gestell” (enframing), the discursive and the non-discursive conflate; it is both
object and logic – a diagram, in the terms of Foucault, but with the difference in
nature between the two planes largely gone. The lesson we take from this is
diametrically opposed to Heidegger's position: involvement instead of withdrawal.

We would like to argue that technology affords not one but multiple ways of
revealing being, and that the way we create technical artifacts – and software most
importantly – heavily influences the cultural role they will play. Tools are not
neutral; they integrate and propagate human values (Friedman, 1997). But these
values are not necessarily those of technocratic reasoning as Heidegger would have
it – the whole gamut of human apprehension is possible. Software brings technology
closer to us than ever before and it is time to look at the practices that spawn what
has become an important part of the constitutional fabric of our cultures.

2.SOFTWARE, DESIGN AND OPEN SOURCE

Since the advent of digital computers in the late forties and especially the marketing
of the consumer PC in the eighties, they have come to be ubiquitous. But while the
terms “computer” and “technology” have almost become synonymous and the basic
technical principles have remained the same for the last sixty years, there remains an
aura of vagueness around these machines. Herein actually lays their power.
Computers themselves are functionally underdetermined; they need software to turn
them into complete devices with distinct functions. While the hardware, the
Universal Machine (coupled with peripherals like input/output devices, networks,
etc.), is the necessary mechanical base layer, the “specific” machine – a series of

3 The Slashdot communication platform (http://www.slashdot .org) for examples uses an elaborate
system for attributing symbolic capital and modulating the visibility of individual messages.

4 BERNHARD RIEDER AND MIRKO TOBIAS SCHÄFER

functions and procedures that manipulate information and, with proper connection,
matter and energy – is the result of programming. Alan Turing (1948) stated that,

"The importance of the universal machine is clear. We do not need to have an infinity of
different machines in doing different jobs. A single one will suffice. The engineering
problem of producing various machines for various jobs is replaced by the office work
of 'programming' the universal machine to do these jobs."

These words mark not only the technical novelty but also another reason for the
cultural significance of IT: somebody who buys a computer today gets not only the
physical apparatus, but also gains access to a seemingly infinite world of logical
machinery. These software programs spring from a burgeoning environment where
work styles nowadays go well beyond the classical methods of engineering or even
beyond the “office work” mentioned by Turing. But before we can have a closer
look at these practices, we must first review some qualities of software.

2.1Properties of Software

While there has been a continuous reflection of what software actually is, this
problem is still far from being completely understood. Despite the stability of
mathematical foundations since Turing, Church, and Shannon, the final judgment of
what we can really do with software is still out. As society changes, software
changes and every day there are new applications that surface around the globe. It is
possible, however, to specify some of the basic properties of logical machinery.

Unlike other technological objects, software is immaterial. It is similar to
language concerning structure and similar to technology concerning effect. Written
like a text, it functions like a machine. Latour (1992) pointedly observes by
paraphrasing Austin that “how to do things with words and then turn words into
things is now clear to any programmer." The classical distinction made in
engineering between designing (drawing the blueprints) and building (assembling
the physical structure) does therefore not translate well into software programming:
according to Jack W. Reeves (1992) the source code compares to the design but
building is nothing but the automatic translation of source code into machine
language by a compiler program. In contrast to classic (hardware) engineering,
software is thus expensive to design – it takes a lot of time – but cheap to build.
From an economic perspective, we can even speak of an apparatus of production
unlike other areas of technology, specific to the creation of software: except for the
price of the computer, producing software is basically free, time becoming the
essential cost factor. In that sense, software is again closer to literature or music than
to industrial production – the workstation is the factory floor. This greatly facilitates
for people to shift from consumers to producers.

Like knowledge and information, software can be shared without tangible loss
for the giver. The Internet transports and copies computer code as simply as text,
sound, or images; algorithms, program libraries, and modules pile up at different
sites, contributing to what could be seen as the equivalent of a fully equipped
workshop with an unlimited spare parts inventory attached to it, accessible again at
the cost only of time and skill. A general-purpose programming language like Java

BEYOND ENGINEERING 5

nowadays comes with thousands of ready-made building blocks and writing code is
often closer to playing Legos than to the laborious task of manipulating memory
registers it used to be.

Unlike the products of industry, a computer program is always tentative, never
really finished or “closed”. Classic machinery also has to be tended to, calibrated,
and repaired, but with software the provisional aspect is pushed to the extreme. One
mouse click and an entire subsystem can be copied into another program and the
output of one piece of software can instantly become the input of another. We do not
want to encourage in any way the view that holds everything digital as fluid, chaotic,
and auto-organized, but there remains the fact that the freedom from most physical
constraints renders software easier to manipulate and handle than hardware objects.
The only constraining factors are time and skill. This relative freedom is one reason
for the production of software in practice being so unlike engineering by the book.

2.2Software Design as Heterogeneous Practice

According to IEEE Standard 610.12, software engineering is “the application of a
systematic, disciplined, quantifiable approach to the development, operation, and
maintenance of software.”4 The attempt to translate the strategies and methods of
classic engineering into the area of software has never been entirely successful and
has been criticized from different directions. We cannot possibly summarize all the
different views expressed in this complex and long standing debate, but there are
several main positions of criticism that can be distinguished:

One argument holds simply that programming is based less on method than on
skill, that it is craftsmanship rather than engineering, and that “in spite of the rise of
Microsoft and other giant producers, software remains in large part a craft industry”
(Dyson, 1998). The main question for design, then, is not how to find the proper
methods but how to acquire the appropriate skills.

Another position argues that software engineering has its place but that specific
methods and strategies cannot be directly imported from traditional engineering,
because software is very much unlike bridges and houses (Reeves, 1992).
Debugging for example should therefore not be treated as a hassle to be eliminated
by mathematical rigor, but as an essential part of creating computer programs.

Finally there are those who believe that software engineers should be
supplemented by other professions, in particular by software designers who take
inspiration from architects rather than engineers because buildings and software
“stand with a foot in two worlds—the world of technology and the world of people
and human purposes” (Kapor, 1996). In this view, building a computer program is
then not so much about technical problems, but about how to bring users and tools
together in a meaningful way.

Independently of these different views remains the empiric observation that the
actual practice of creating software rarely resembles the top-down engineering
models like the lifecycle- or the waterfall-model where the process of going from
neat requirements to a working program is thought of as a advancing in clear cut
4 See: http://standards.ieee.org/catalog/olis/se.html

6 BERNHARD RIEDER AND MIRKO TOBIAS SCHÄFER

stages. The “real world” of software development is most often described as “messy,
ad hoc, atheoretical” (Coyne, 1995), as consisting of “bricolage, heuristics,
serendipity, and make-do” (Ciborra, 2004), or as the result of “methodological and
theoretical anarchism” (Monarch, 1997). While this does not automatically make
software production “art”, as Paul Graham (2003) suggests, we have to accept that
the engineering ideal is just that: an ideal. The actual practice commonly has to go –
in different ways – beyond engineering. Two important factors have to be taken into
account: changing problems and increasing complexity.

The problems software is supposed to solve are becoming more “cultural” and
less “technical”. If computers were still doing what they did during the 60s (namely
number crunching and data storage) there would probably be no discussion about
software engineering or design. With computers now performing semantic and
social functions this has changed. Methods like participatory design or end-user
development try to integrate the fuzziness of specifications by integrating future
users into the construction process itself.

The complexity of software is increasing rapidly and that makes it always more
difficult to plan a program in every detail before starting to write code. It is often
impossible to foresee problems early on and plans and models have to be changed,
tests have to be made, specifications have to be changed in the actual construction
process. Agile methods like extreme programming and rapid-prototyping strive to
make complexity more manageable and transform the top-down waterfall into a long
series of iterations.

The properties of software itself, the distribution of those properties into space
by the Internet, and the changing technological landscape are slowly eroding the
modern ideal of a neat separation between technology and culture, between detached
rationality and human motivations. This argument is endorsed by a closer look at the
diverse landscape of software production. As an example, we will therefore briefly
analyze the open source scene in order to show how a whole new array of actors,
strategies and practices can emerge in a situation where material cost is no longer a
limiting factor.

2.3The Open Source Scene

On one level, the term “open source” refers to a certain way of handling and sharing
computer software.5 It implies that programs are not just available in machine code,
but in source code – text files written in a programming language accessible to
human beings. But to qualify as open source, it is essential that the public is allowed
to modify and redistribute the product. On another level, the term refers to
communities6 built around this notion of openness and sharing that is responsible for
a considerable amount of today’s software production. For nearly every type of
program there now is an open source equivalent.

5 We are referring here to the open source definition given by the Open Source Initiative
(http://www.opensource.org/docs/definition.php)

6 The open source scene is far from homogenous and there is some infighting between the very
political Free Software Movement and the rather pragmatic Open Source Movement.

BEYOND ENGINEERING 7

The open source scene is rather diverse, but it is possible to sketch an ideal type
of how it functions. Most importantly, it is impossible to imagine open source
without the existence of the Internet. Platforms like sourceforge.net, along with
mailing lists and newsgroups, are the tools used to organize and coordinate a
globally dispersed and mostly voluntary workforce. A project usually starts with an
embryologic program written by an individual or a group which is released under an
open source license, to people who are invited to participate in its development. If it
can stimulate enough interest, a lively process is set into motion: following the
“release early, release often” maxim, versions of the program are regularly
published on the Web where anybody interested can add code, report bugs and fix
them. Which features and fixes are integrated is usually decided by a moderator
(group or individual), supplemented by a community process very similar to
scientific peer-review. The very linear structure of classic engineering is thus
translated into a rapid succession of coding/building/debugging, where requirements
specification, interface design and user testing are concurrent and subject to constant
change. Collaboration is the main “tool” to tackle complexity. The Internet-based
development platforms provide the infrastructure for a project’s representation, for
communication between its participants and for the coordination of bug tracking and
code maintenance. They are the media that render possible what could be called a
“virtual factory” where a diverse and dispersed public channels their collective
intelligence.

The open source scene also distinguishes itself from traditional engineering in
social norms and general mindset. Mathematical rigor is valued less than an open
and involved communication style. Similar to other (youth) subcultures, the
demonstration of skill (and not diplomas) is the main source of symbolic capital.
Inclusiveness, discussion, collaboration and the open circulation of information is
more important than the clear-cut attribution of tasks, positions and responsibilities.

On an institutional level, the open source scene has become an important
element in the socialization and education of programmers. The lively and helpful
online communities allow for getting help and learning from achieved individuals.
The accessible code landscape and participatory culture make for a powerful
learning environment for all levels of skill. While engineering is traditionally
connected to the somewhat authoritarian institutions of school and university, the
open source community supplements these forms by offering a learning-by-doing
environment based on playful imitation and autodidactic skill acquisition.

To show that open source products are an important part of the software
landscape, we will briefly discuss three examples: the Linux operating system, the
Apache Web server and the Internet browser Firefox.

Linux started out in 1991 when a Finnish student, Linus Torvalds, wrote a very
basic kernel program – the core of any operating system – as a hobby project and
released it on the Web, inviting others to participate. Since then, Linux has
developed into a modern, robust and complete operating system and now probably is
the only serious competitor for Microsoft Windows left. It is available for free and
constantly maintained and extended by a community of thousands of programmers

8 BERNHARD RIEDER AND MIRKO TOBIAS SCHÄFER

around the globe. Most Fortune 500 companies now use Linux, as well as the public
administrations of Vienna, Munich and Paris. One reason for this success is cost, but
other factors come into play, including reliability, platform independence and the
possibility to directly fix bugs without having to go through a vendor company.

The Apache project was initiated in 1995 and has since then steadily grown to
become the dominant Web server application with a market share of over 69%.7

Open source and available for free, it is developed and maintained under the
guidance of the Apache Software Foundation, a non-profit company that helps
organizing the development process, assures legal support for the community and
protects the brand. Linux and Apache, coupled with the free database system MySQL
and an open source programming language, PHP, form the most common platform
(called LAMP) for dynamic Web applications.

The Firefox Web browser grew out of code released to the community in 1998
by the ailing company Netscape. After several rather unsuccessful products, the
Mozilla Foundation released Firefox in the end of 2004 as version 1.0. Carried by
strong critique of Microsoft’s Internet Explorer for its various security leaks, the
open source browser has captured considerable market share8 in 2005. It is also a
good example for how the open source community allows for the participation of
non programmers. Through Bugzilla, a tool for tracking bugs, anybody can report
errors and ask for features in future releases. Skilled users may extend the browser
through plug-ins without having to get to know the code of the main application.
Firefox is finally not just a piece of software but also a community providing logos,
t-shirts, images and wallpapers as well as an entire viral marketing campaign.

The open source scene shows that methods and strategies in technical production
cannot be divided from the social, economic and cultural environment they are
stimulating and getting stimulated by. The culture of engineering is but one of many
possibilities. Computers have made technical creativity accessible to a larger and
more diverse audience than other technologies ever have. From writing code to
creating levels for computer games, there is a wide scale of possible involvement for
every level of skill. While the new modes of creation are in many ways similar to
earlier forms of hobbyist culture they are different in a very important aspect: the
three programs we presented are not just niche products but highly competitive
artifacts of great quality that hold strong market positions. We call this extension of
production and distribution processes an extended culture industry, where
“consumers” are not only modifying products but are changing parts of the
apparatus of production.9 There are of course many commercial actors playing a role
in the open source scene – IBM, Novell, Intel, and others take an active part in
financing and developing. However, the intertwined networks of production that
span between companies and individuals go nonetheless beyond the mono-
7 Netcrapft ServerWatch October 2005, http://www.serverwatch.com/stats/article.php/3554746
8 In Europe Firefox is ranging up to 34% in Finland and 24% in Germany; see XiTi Browser Survey,

September 2005, online: http://www.xitimonitor.com/etudes/equipement11.asp
9 Already Walter Benjamin (2002) called for such a shift from adapting the products of cultural

industry to adapting the apparatus of production itself. This shift turns readers and viewers into
participants.

BEYOND ENGINEERING 9

directional processes Adorno and Horkheimer were criticizing so severely (Adorno
and Horkheimer, 1944). The idea has been contagious and phenomena like
Wikipedia, blogging or the countless music labels on the Web take the open source
principle to a larger context of cultural production. Computers and the Internet can
be seen as enabling technologies that give users the opportunity to extend the culture
industry and to participate in the production of cultural artifacts, stimulating the
social dynamic we witness today (Jenkins, 2002).

While engineering is often seen as a neutral, detached and “objective” way of
problem-solving, the collaborative and auto-organized design process that marks the
open source scene does not strive to separate the social and cultural aspects of
technological creation from the actual task of designing and writing code.

These developments are not aimed at replacing the traditional and more
organized institutions of work, education, and research; what we witness today is a
trend toward enlargement, supplementation and plurality. With reference to an
influential article written by Eric Raymond (1998), we could say that the bazaar is
not replacing the cathedral; it is blossoming in the city streets around it.

3.BRIDGING THE CULTURE/TECHNOLOGY DIVIDE

So far, we have made two separate arguments: first, we tried to show that software
plays an increasingly important role in our everyday lives, accentuating culture as a
hybrid of technology and discourse. Second, we stated that software has come to be
developed in heterogeneous and contradictory environments where creative
practices flourish outside of the classical institutions and methodology of
engineering. In the third part of this article, we want to briefly discuss these two
arguments in relation to their impact in three different areas: the humanities,
technology, and policymaking.

3.1The Humanities Discourse

Traditionally, philosophy and cultural theory have subscribed to a view of
technology as something external to – or at least different from – society and
culture. In this perspective, the practice of creating a technical artifact is very
dissimilar in nature from processes of symbolization, e.g. the writing of law or
literature. The first is supposedly oriented toward the material domination of our
“lifeworld” (Lebenswelt) through efficiency, while the second is concerned with the
social (law) or cultural (literature) dimension of human existence. This separation
has the convenient effect of exempting thinkers of technology from any need for
technical knowledge because “techno-science” always produces but more of the
same, the true challenge lying in the discovery of the essential dynamics between the
strata – an endeavor reserved to the masters of symbolization. But there is a very
dangerous side to this outlook: subtracting the dimension of meaning from
technology implies the subtraction of responsibility. If the creation of technology is
not understood to be a deeply cultural, social, symbolic, and political activity, there

10 BERNHARD RIEDER AND MIRKO TOBIAS SCHÄFER

is no reason for the creators to adopt any ethical and political stance toward their
work beyond the question of physical harm to others. We believe that in a time when
logical machinery takes part in so many of the practices that make up our lives, we
need concepts that are not only aware of “effects” of technology on culture, but
which recognize that technology is a form of culture – embodying not just the
homogenous logic of Gestell, but continuously differentiated into a plurality of
forms, practices, values and power struggles.

There fortunately is a growing amount of empirical work on technical production
and large software projects now frequently include social scientists. However,
looking at the heterogeneous field of software design we should ask whether our
concepts of technology are adequate to grasp the heterogeneity of possible
attachment. The humanities could take up the task of broadening our still very
restrained technical imaginary and lead the way towards modes of production that
facilitate finding other liaisons between human and non-human than those marked
only by domination, efficiency and convenience.

3.2The Technologist Discourse

If we recognize software design as a pluralistic and fractured practice which takes
part in shaping the fabric of the world we live in, we have to rethink our stance not
only as theorists, but also as creators of technology. Terry Winograd and Fernando
Flores wrote nearly twenty years ago that “we encounter the deep question of design
when we recognize that in designing tools we are designing ways of being”
(Winograd and Flores, 1986). A dialogue between the different groups implicated in
designing software is necessary in order to foster awareness of the cultural
dimension of their work. This is already somewhat in the making: a part of the open
source community has adopted an explicit stance on the political issues surrounding
their technical efforts and the software design community is making a strong effort
in linking up with the humanities.

The field that is lagging severely behind is education. There is still very little
discussion between the technical departments and the humanities, and the current
curricula are fit for producing neither the “culturally-aware technologist” nor the
“technically-aware theorist”. Herein lies the true challenge of bridging the
dichotomy between culture and technology: bringing the more inclusive
understanding of technology that is currently emerging to the places where it could
actually have an effect.

3.3Policies

The third area of our discussion is policy – and luckily, there is already a very lively
debate going on in this area, especially around the questions of software patents and
open source. The discussion however is strongly centered on economic and juridical
questions, treating the cultural aspects as mere collaterals. The recognition that the
creators of technology, operating outside of the classic paths of established industry,
are an important part of civil society that actively produce cultural resources is

BEYOND ENGINEERING 11

eminently missing. Only when we understand writing software as one possible way
of participating as a citizen can the political issues be properly addressed. The state,
as the arbiter in the ongoing battle around software patents, will have to decide
whether the amorphous coder communities sprawling on the Web that put their work
at the disposition of the public domain are of special value to society and therefore
worth protecting against the overwhelming financial capacities of the established
commercial actors. The new design practices that we tried to present and theorize in
this article are by no means inevitable; although the Universal Machine is a strong
base for the social and cultural activities surrounding them, the free flourishing of
technical creativity is a fragile thing that can easily be reduced to the place of mere
hobbyist dabbling, as it was the case with many other technologies. There (still) is
democratic potential in the new metamedia and we will have to decide whether we
want to nurture it or not.

4.CONCLUSION

We have entitled this paper “beyond engineering”, because the term “engineering”
has come so much to stand for the technocratic separation between a sphere of
technology and a sphere of culture, society, and politics; for a mindset that treats the
creation of technical artifacts as a detached and orderly process, closer to calculation
than to creativity. The modern ideal of engineering as a politically and culturally
neutral process – unspoiled by human motivations and uncontaminated by morals
and emotions – appears today as rather anachronistic. A closer look at software
design shows that there are multiple and heterogeneous methods, strategies, and
mindsets guiding the creation of programs, systems and applications. Our short
analysis of the open source scene is evidence that extensions to classic
methodologies, alternative routes, collaborative approaches, and auto-organized
forms of workflow are not only possible but effective.

We believe that the fluctuations in how technical artifacts are created are not just
minor adjustments but necessary adaptations to the changing place of technology in
our societies. As technology slowly infiltrates always the practices that make up our
everyday lives, culture stabs back by invading the terrain of production, bringing all
its contingencies, contradictions, and complexities along. There never was a clear
separation anyhow, but the level of interpenetration has reached new heights. The
immaterial qualities of software, distributed into space by the global infrastructure of
the Internet, affect an increasing number of people, users as well as designers. We
have called the resulting space of production, distribution, and consumption an
extended culture industry where the boundaries between consumers and producers
are blurring and social and technical forces are intertwining closely.

But while there is some understanding of how to channel social forces in a
democratic fashion, it is still unclear of how to achieve the same for the technical
part of the hybrid. It now seems evident that in high-tech societies the creation of
tools and objects plays an important role in shaping cultural practice, expression and
imagination; it is a highly cultural gesture. Looking at the similarities between
language and software not only can help us understand the nature of our currently

12 BERNHARD RIEDER AND MIRKO TOBIAS SCHÄFER

complicated techno-social situation; it can also make us see that freedom of
technical creation is a form of freedom of speech. It is the duty of the humanities to
work out what that could mean.

REFERENCES

Adorno, T., and Horkheimer, M., 1988, Dialektik der Aufklärung, Fischer, Frankfurt a. M., first published
1944.

Benjamin, W., 2002, Der Autor als Produzent, in: W. Benjamin, Medienästhetische Schriften, Suhrkamp,
Frankfurt a.M., pp.231-247, first published 1934.

Castells, M., 2000, The Information Age: Economy, Society and Culture. 3 volumes, Blackwell, Malden
MA, first published 1996.

Certeau, M. de, 1994, L'invention du quotidien, Gallimard, Paris, first published 1980.
Ciborra, C., 2004, Encountering Information Systems as a Phenomenon, in: The Social Study of

Information and Communication Technology. Innovation, Actors, and Contexts, C. Avgerou, C.
Ciborra, F. Land, Oxford University Press, Oxford, New York, pp. 17-37, p.19.

Collins, H., Kusch, M., 1998, The Shape of Actions. What Humans and Machines Can Do, MIT Press,
Cambridge MA, London.

Coyne, R., 1995, Designing Information Technology in the Postmodern Age. From Method to Metaphor,
MIT Press , Cambridge, London, p.32.

Dyson, F. J., 1998, Science as a Craft Industry, Science, 280 (5366) pp. 1014–1015.
Friedman, B., ed., 1997, Human Values and the Design of Computer Technology, Cambridge University

Press, Cambridge.
Graham, P., 2003, Hackers and Painters, Lecture at Harvard, http://www.paulgraham.com/hp.html
Jenkins, H., 2002, Interactive Audiences?, in: The New Media Book, D. Harries, ed., British Film

Institute, London. Pages?
Kay, A., and Goldberg, A., 2003, Personal dynamic Media, in: The New Media Reader, F. Wardrip, and

N. Montford, eds., MIT Press, Cambridge MA, pp. 393-404, first published 1977.
Kapor, M., 1996, A Software Design Manifesto, in Bringing Design to Software, T. Winograd, ed.,

Boston, Addison-Wesely, pp. 1-10, p. 4.
Latour, B., 1992: Where are the missing Masses?, in: Shaping Technology / Building Society, W. Bijker,

and J. Law, eds., , MIT Press, Cambridge MA, pp. 225-258 p.255.
Latour, B., 1999, Pandora's Hope. Essays on the Reality of Science Studies, Harvard University Press,

Cambridge MA, London.
Monarch, I. A., et. al., 1997, Mapping Sociotechnical Networks in the Making, in: Social Science,

Technical Systems, and Cooperative Work. Beyond the Great Divide, G. C. Bowker, et. al., eds.,
Lawrence Erlbaum Associates, Mahwah, London, pp. 331-354, p.337.

Raymond, E. S., 1998, The Cathedral and the Bazaar, First Monday, 3(3),
http://www.firstmonday.org/issues/issue3_3/raymond/.

Reeves, J. W, 1992, What is Software Design?, C++ Journal, Fall 1992.
Turing, A. M., 1948, Intelligent Machinery, National Physical Laboratory Report, p.4.

(http://www.alanturing.net/turing_archive/archive/l/l32/L32-001.html)
Winograd, T., and Flores, F., 1986, Understanding Computers and Cognition. A New Foundation for

Design, Addison-Wesley, Boston, p.xi.

	1.Hybrid Practices
	2.Software, Design and Open Source	
	2.1Properties of Software
	2.2Software Design as Heterogeneous Practice
	2.3The Open Source Scene

	3.Bridging the Culture/Technology Divide
	3.1The Humanities Discourse
	3.2The Technologist Discourse
	3.3Policies

	4.Conclusion

